
CPT Pharmacometrics Syst Pharmacol. 2022;11:425–437.	 ﻿	    |  425www.psp-journal.com

INTRODUCTION

Clinical trials are a gold standard in the development of 
novel therapeutics. Through clinical studies, informa-
tion and data are generated and may be integrated on a 
continuous basis, thereby improving our understanding 
of disease pathology and progression, pharmacologic 

intervention, trial design, and, ultimately, personalized 
medicine.1,2

Clinical outcomes may be assessed based on a number 
of criteria.3 In earlier stages of development, longitudi-
nal biomarkers may be measured according to a defined 
schedule, allowing for the investigation of patient response 
trends and to determine whether a biomarker reaches a 

Received: 31 May 2021  |  Revised: 15 December 2021  |  Accepted: 3 January 2022

DOI: 10.1002/psp4.12763  

T U T O R I A L

A workflow for the joint modeling of longitudinal and 
event data in the development of therapeutics: Tools, 
statistical methods, and diagnostics

Kirill Zhudenkov1  |   Sergey Gavrilov1,2  |   Alina Sofronova1  |   Oleg Stepanov1  |   
Nataliya Kudryashova1  |   Gabriel Helmlinger3  |   Kirill Peskov1,4

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 M&S Decisions LLC. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology 
and Therapeutics.

1M&S Decisions LLC, Moscow, Russia
2The faculty of Computational 
Mathematics and Cybernetics, 
Lomonosov MSU, Moscow, Russia
3Clinical Pharmacology & Toxicology, 
Obsidian Therapeutics, Cambridge, 
Massachusetts, USA
4Research Center of Model-Informed 
Drug Development, Sechenov First 
Moscow State Medical University, 
Moscow, Russia

Correspondence
Kirill Zhudenkov, M&S Decisions, 5, 
Naryshkinskaya al. Moscow 125167, 
Russia.
Email: kirill.zhudenkov@msdecisions.
ru

Funding information
This work was financed by the Ministry 
of Science and Higher Education of 
the Russian Federation within the 
framework of state support for the 
creation and development of World-
Class Research Centers "Digital 
biodesign and personalized healthcare" 
no. 075-15-2020-926.

Abstract
Clinical trials investigate treatment endpoints that usually include measurements 
of pharmacodynamic and efficacy biomarkers in early-phase studies and patient-
reported outcomes as well as event risks or rates in late-phase studies. In recent 
years, a systematic trend in clinical trial data analytics and modeling has been ob-
served, where retrospective data are integrated into a quantitative framework to 
prospectively support analyses of interim data and design of ongoing and future 
studies of novel therapeutics. Joint modeling is an advanced statistical method-
ology that allows for the investigation of clinical trial outcomes by quantifying 
the association between baseline and/or longitudinal biomarkers and event risk. 
Using an exemplar data set from non-small cell lung cancer studies, we propose 
and test a workflow for joint modeling. It allows a modeling scientist to compre-
hensively explore the data, build survival models, investigate goodness-of-fit, and 
subsequently perform outcome predictions using interim biomarker data from 
an ongoing study. The workflow illustrates a full process, from data exploration 
to predictive simulations, for selected multivariate linear and nonlinear mixed-
effects models and software tools in an integrative and exhaustive manner.
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target value. In later phases of clinical studies and often 
in addition to longitudinal biomarkers, it is common to 
assess endpoints such as time-to-event data or event rates. 
Depending on the disease or indication, outcomes may 
encompass overall survival (OS) or progression-free sur-
vival (in oncology), exacerbation risk and/or rates (e.g., 
chronic obstructive pulmonary disease [COPD], asthma), 
relapse rates (e.g., multiple sclerosis), myocardial infarc-
tion, stroke, or other cardiovascular events (e.g., cardio-
vascular diseases, chronic kidney disease [CKD]), and so 
on.3

Intuitively, one may expect that baseline and/or lon-
gitudinal biomarkers are correlated to some degree with 
observed event outcomes. For example, the forced expi-
ratory volume in 1 s is associated with exacerbation risk 
in COPD4; the sum of the longest diameters of target le-
sions (SLD) is associated with risk of death in non-small 
cell lung cancer (NSCLC).5 The association between 
biomarker and time-to-event data has also been identi-
fied and studied in multiple analyses of various diseases, 
including heart failure, CKD, diabetes, Alzheimer's dis-
ease, infectious diseases, colorectal and prostate can-
cers, and so on.6–13 These analyses have investigated the 
association of biomarkers and time-to-event data via 
joint models (JMs).14 JMs represent an extended class 
of parametric survival models, which are based on pro-
portional hazards models and are able to integrate both 
baseline values and dynamics of longitudinal covariates. 
JMs may ultimately be used to address essential ques-
tions in the assessment and prediction of clinical trial 
outcomes, including investigation and prediction of lon-
gitudinal biomarker trends, biomarker association with 
an event risk, individual survival predictions, and un-
biased estimation for both biomarker and time-to-event 
outcomes.3,6,14

In this tutorial, we focus on technical aspects of a mod-
eling workflow for a common class of JMs that incorporate 
noninformative right censoring and proportional hazards 
survival submodels. Right censoring is a specific prop-
erty of time-to-event data and is frequently encountered 
in clinical trials. An event of interest does not necessarily 
occur for all subjects during the trial observation period, 
and the time to that event, if an event occurs at all, will 
vary among trial subjects. A censoring event occurs when 
a subject leaves the study for a specific reason. Depending 
on the dropout nature, censoring could be classified as 
informative or noninformative.14 Informative censoring 
assumes that the censoring event is directly related to the 
subject's disease progression, whereas noninformative 
censoring assumes the censoring is independent from the 
subject's condition and therefore from the event of inter-
est. The noninformative hypothesis is commonly used for 
survival modeling in clinical trials.6,10,14

The JMs described in this tutorial may be developed 
using various software tools integrating linear and non-
linear mixed-effects (LME and NLME, respectively) ap-
proaches to handle longitudinal data.

This modeling workflow seamlessly integrates multi-
ple steps, including data exploration, survival model se-
lection, and qualification (goodness-of-fit and parameter 
interpretation) using training data and subsequent model 
validation against interim external data accumulated up 
to a certain timepoint (Figure  1). Such a workflow can 
be applied by a data analyst or modeling scientist who, 
upon collecting retrospective information and data from 
completed clinical trials, aims at predicting outcomes of 
another clinical study, for which only interim data are 
available.

Using particular NSCLC data sets,15,16 we implemented 
and tested the JM workflow to investigate the association 
between selected biomarkers and OS and to quantify the 
incremental benefit that is gained using longitudinal bio-
marker data versus baseline biomarker only.

STRUCTURE OF JMS

Biomarker and event data may be described using various 
regression models.17,18 LME and NLME models are typi-
cally developed to characterize longitudinal biomarkers:

Equation (1) represents a linear model, where Xi and Zi 
are known design matrices for, respectively, fixed-effects 
regression coefficients β and random-effects coefficients 
bi, with i representing the patient index, where Ini denotes 
the ni-dimensional identity matrix.14 Random effects are 
assumed to follow a multivariate normal distribution (be-
cause multiple biomarkers and model parameters may 
be considered) with a mean vector of 0 and a variance–
covariance matrix D and are also assumed to be indepen-
dent from the error terms εi, that is, cov(bi, εi) = 0. Further 
details on univariate and multivariate model structures 
for longitudinal biomarkers and their interpretation may 
be taken from the literature.14,19

Proper selection of model structure and subsequent 
qualification of LME and NLME models may provide the 
modeler with biomarker trends in the population under 
study as well as information on random effects and re-
sidual error as typically performed in pharmacometric 
research.20 Similarly to previous analyses, one may use 
predetermined NLME models defined in the form of 

(1)

⎧⎪⎨⎪⎩

yi (t) =Xi (t) �+Zi (t) bi+�i (t) ,

bi∼N (0,D) ,

�i∼N
�
0, �2Ini

�
,
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explicit/empirical functions or using ordinary differential 
equations (ODEs).17 However, for many biomarkers, such 
information may not be available, and additional research 
would be required to identify an adequate model.

Time-to-event data may be analyzed using survival 
models, which are defined by a hazard function14:

Equation  (2) describes the instantaneous risk of an 
event in the time interval [t, t + dt], provided survival up 
to time t. Given this definition, hi(t) is also referred to as 
the instantaneous risk function. T∗

i
 denotes the true time 

of events for the patient of interest. The hazard function 

defined previously can be used to derive individual sur-
vival probabilities according to the following equation14:

The survival function (whether it represents actual 
survival, or progression, exacerbations, relapses, etc., de-
pending on the disease and indication under study) can be 
expressed by means of a cumulative hazard function Hi(t) 
that describes the accumulated risk up to time t. Function 
Hi(t) can also be interpreted as the expected number of 
events to be observed up to time t. Individual survival 
functions Si(t) can be further used to estimate the survival 
of the overall population and may be compared with a 

(2)hi (t) = lim
dt→0

Pr(t≤T∗
i
< t+dt|T∗

i
≥ t)

dt
, t>0

(3)Si (t) = exp
{
−Hi (t)

}
= exp

{
− ∫

t

0
hi (s) ds

}

F I G U R E  1   Schematic representation illustrating the steps required for a joint modeling analysis. Left to right: data exploration involves 
plotting biomarker and survival data as well as study baseline characteristics. Qualification of survival models is performed against a 
training data set to obtain model parameters, visual predictive checks for biomarkers, and survival goodness-of-fit plots. Validation of a joint 
model is completed by using the previously estimated model parameters to perform a survival discrimination analysis by means of ROC-
AUC and BS as well as simulate biomarker trends and make survival predictions against interim validation data. BS, Brier score; ECOG, 
Eastern Cooperative Oncology Group score; LDH, lactate dehydrogenase; ROC-AUC, area under the receiver operating characteristic curve; 
SLD, sum of the longest diameters of target lesions; WHO, World Health Organization score.
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nonparametric survival estimator by means of a Kaplan-
Meier (KM) curve.

JMs may be used to associate baseline (wi) and longitu-
dinal covariates (represented by the individual biomarker 
time course: mi(t) = Xi(t)� + Zi(t)bi from Equation  (1) 
with event risk from Equation (2). For such proportional 
hazards models, hi(t) may be formulated as follows:

In Equation (4), αb represents the association parame-
ters for the baseline biomarkers (as typically implemented 
in Cox models), and � is the association parameter for the 
longitudinal biomarker. Equation (4) is formulated for one 
baseline and one longitudinal biomarker. For multivariate 
models, each of the considered biomarkers should have αb 
or α assigned depending on a biomarker type.

If biomarkers are considered at baseline only, then Cox 
proportional hazards models can be used and h0(t) is not 
specified because the Cox model parameter optimization 
is handled using partial log-likelihood function. However, 
in JMs with longitudinal biomarkers, h0(t) should be 
specified in either way (i.e., piecewise constant function, 
splines, a Weibull distribution).14,21 Parameters of a JM 
can be identified using the principle of maximum likeli-
hood based on the following formulation for the logarith-
mic joint conditional likelihood function14,22:

where:

In Equation (5), δi is an event indicator (i.e., assumes 
a value of 1 for an event and of 0 for censoring from the 
study), Ti is the observed event time or censoring time 
(Ti  =  min(T∗

i
, Ci), where Ci is the censoring time and θ 

denotes the full vector of model parameters). Averaged 
Si(t) represents the marginal survival for the entire patient 
cohort and can be compared with KM estimates of OS.14

Other approaches that incorporate a sequential anal-
ysis of biomarkers and time-to-event data (including ex-
tended Cox models that handle time-varying biomarkers) 
have also been investigated in the literature. However, 
such analyses may require methodological improvements 
to address the potential bias presented in parameter 
estimates.14,21,23

OVERVIEW OF SELECTED TOOLS 
FOR JOINT MODELING

There is a wide variety of statistical software tools availa-
ble for JM development and assessment—see Table 1 for a 
nonexhaustive list. Each JM software comes with specific 
sets of options as well as data set format requirements. For 
example, if a simple univariate analysis is targeted in the 
JM package24 in R, then only one longitudinal biomarker 
may be considered, whereas the other available biomark-
ers can only be accounted at baseline levels. Beyond this 
limitation, the JM package provides a comprehensive set 
of options, such as predefined functions for model quali-
fication/diagnostics (embedded in the JM object in the 
R environment) and validation/simulation (available via 
predict() and survfitJM() functions), and it is computation-
ally fast.

If models with multiple longitudinal biomarkers are 
considered, the JMbayes and rstanarm software pack-
ages,25,26 which provide Bayesian inference for biomarker 
characterization, can be used. However, in these multi-
variate JM packages, the advanced diagnostics for longi-
tudinal biomarkers are less convenient to handle, and the 
embedded features for biomarker/survival simulations 
have limited functionality. Also, these packages require 
similar measurement times for all considered longitudinal 
biomarkers (often it is not the case in actual clinical data 
sets). Moreover, all of these packages (JM, JMbayes and 
rstanarm) reach limitations when it comes to the descrip-
tion of biomarker dynamics because only linear functions 
for biomarker description may be used. Thus, if the dy-
namics of biomarkers need to be investigated with more 
mechanistic models, these R-based LME packages may 
not represent ideal choices. Nevertheless, with some data 

(4)hi (t) = h0 (t) ∗ exp
{
�bwi + �mi (t)

}
,

li (�) = log ∫
{

ni∏
j

p(yij|bi; �)
}{

h(Ti|bi; �)�iSi(Ti|bi; �)
}
p
(
bi; �

)
dbi,

(5)Si(t|bi; �)=exp
(
−∫

t

0

h0 (s; �) exp
{
�bwi+�mi (s)

}
ds

)

T A B L E  1   Joint modeling tools, their features, diagnostics, and simulation capabilities

JM 
package

JMbayes 
package

rstanarm 
package NONMEM Monolix Stan

LME models Yes Yes Yes Yes Yes Yes

NLME models No No No Yes Yes Yes

Multivariate models No Yes Yes Yes Yes Yes

Biomarker and survival predictions Available Limited Limited Available Available Available

Abbreviations: LME, linear mixed effects; NLME, nonlinear mixed effects.
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sets, linear models, for example, based on splines, may ad-
equately characterize biomarker dynamics.4

NLME models have become a standard in quantitative 
clinical pharmacology for longitudinal biomarker analy-
sis.27 These models represent a natural choice to describe 
these biomarkers and to associate their dynamics with 
event risk in a JM framework. For such advanced nonlin-
ear JMs, the widely known NONMEM and Monolix phar-
macometric software tools may be used.28–30 NLME JMs 
can also be implemented in Stan software, with even more 
advanced options including user-defined likelihood func-
tion formulation.5,6,31,32

In this tutorial, and for illustrative purposes, we imple-
mented a JM workflow using the following set of mod-
eling tools: JM v1.4–8 and JMbayes v0.8–85 packages for 
LME JMs, and Monolix 2020R1 for NLME JMs. All R-
based packages were tested in the R 4.0.2 environment.33

CASE STUDY: DATA DESCRIPTION 
AND EXPLORATION

Data from subsets of control arms from two NSCLC 
clinical studies, NCT0031237716 and NCT00364351,15 
were taken from the Project Data Sphere repository.34 
In both subsets, patient data had been deidentified and 
did not include data from Chinese patients. Biomarker 
and OS data from the NCT00312377 study were used 
for model qualification (training data set); data from the 
NCT00364351 study were used for external model vali-
dation (validation data set), according to the workflow 
illustrated in Figure 1.

The treatments administered to these subjects with ad-
vanced NSCLC were as follows: chemotherapy (docetaxel) 
in the training data set and targeted therapy (erlotinib) in 
the validation data set. To build a JM framework, we fo-
cused on prognostic biomarkers, which may potentially 
provide information on survival outcomes regardless of 
treatment type. Interestingly, patient baseline characteris-
tics across the two selected data sets matched rather well, 
including the percentage of patients with mutations in the 
epidermal growth factor receptor—see Table S1.

For simplicity, we limited the number of investigated 
biomarkers to two: tumor size and levels of lactate dehy-
drogenase (LDH).35,36 Tumor size was represented by SLD, 
measured according to the Response Evaluation Criteria 
in Solid Tumors 1.1.37 LDH was selected as a biomarker 
because it is a measure linked to the magnitude of tumor 
metabolic activities. Data for both selected biomarkers 
were available at baseline as well as longitudinal mea-
surements, with a sampling schedule defined in Table S1. 
Exploratory plots of the selected biomarkers as well as OS 
data are shown in Figure 2.

When examining these data sets across the two cho-
sen clinical studies, likeness in trends can be observed 
for SLD, whereas differences in both LDH and OS were 
noted. Given the similarity in patients’ baseline character-
istics across the two studies, the apparently different pat-
terns in longitudinal LDH and OS may be caused by the 
administered therapies. The observed trends in biomarker 
dynamics may also be dependent on the study design, 
measurement schedule, and patient censoring, whereas at 
longer times, only surviving patients with smaller tumor 
sizes and lower LDH levels typically remain in the study.

With the exploratory plots at hand (Figure  2), we next 
describe the subsequent steps in the data processing and JM 
model qualification and validation illustrated schematically in 
Figure 1. Specifically, there we represent the analysis and di-
agnostics for the association of baseline and longitudinal bio-
markers with OS. For more details on the JM workflow and its 
description, see the Supplementary Materials, Figure S1.

DATA SET PREPARATION

A standard vertical data set can be prepared for 
Monolix38–40 as described in the Supplementary Materials, 
Section 1.1. The data frame may be saved as a comma-
separated values (CSV) file to develop and test models via 
the graphical user interface or may be kept as an object in 
the R environment, if lixoftConnectors/RsSimulx packages 
are used to control Monolix.41

The R-based LME tools used in this tutorial require a 
data set format that is common for conventional analyses 
of longitudinal data (in nlme42 or lme443 packages) and 
time-to-event data (in survival44 package) in R. All data 
can be incorporated into a single data frame. We provide 
suggestions on data set structuring for JM/JMbayes in the 
Supplementary Materials, Sections 1.2 and 1.3.

An actual view of the formatted data, ready for further 
analyses in JM/JMbayes and Monolix, is provided in the 
Supplementary Materials, Figure S2.

Different biomarker data transformations may be con-
sidered for optimal model convergence (e.g., log2, log10, 
square root).14 In the present data set and because of the 
high dynamic ranges observed (Figure  2), SLD and LDH 
data were log-transformed into ln(SLD+1) and ln(LDH+1).

SURVIVAL MODEL BUILDING

In survival modeling, the point estimates of parameters ob-
tained in the model outputs should be studied. The size of 
the parameter association with OS can be assessed using 
the hazard ratio (HR) value, which is calculated as exp(αb) 
from Equation (4) for baseline or as exp(α) for longitudinal 
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biomarkers. A covariate increase by one unit would result 
in an instantaneous hazard change by a corresponding HR 
value.14 Thus, in addition to providing statistical signifi-
cance for a biomarker (a p value of <0.05 should be taken14), 
HR provides the inference for clinical significance similarly 
to a conventional pharmacometric analysis.45

In some cases, a particular pattern in biomarker dynamics 
may not have a profound effect on time-to-event outcomes, 
although these statistically significant biomarkers may be as-
sociated with an improved quality of life, patient-reported out-
comes, or other aspects related to disease burden.4 There may 
also be situations when biomarker measurement noise is high 
and/or data sampling is too sparse (e.g., biomarkers of interest 
are measured only at baseline and at the end of a study), so 
that the actual trends cannot be properly captured, and model 
qualification cannot be performed adequately.

Cox proportional hazards models for 
baseline biomarkers

An initial and simple step in the analysis of association 
between biomarkers and a time-to-event endpoint may 

include selection and testing of relevant baseline biomark-
ers via semiparametric Cox proportional hazards models 
that are conventionally used in clinical study analysis and 
offer fast parameter optimization.46 For further survival 
analysis involving JMs, these initially identified statisti-
cally significant biomarkers may be investigated longitu-
dinally by means of fully parametric JMs.

Cox proportional hazards models may be developed 
and tested using survival package in R via the coxph() 
function44 and with the following syntax:

COX <- coxph(Surv(EVENT_TIME,EVENT) ~ SLDb 
+ LDHb, data = jmdata.id, x = TRUE)

As seen from the model code, we investigated the 
importance of two baseline biomarker candidates, SLD 
and LDH. The optimal model should incorporate both 
statistical significance of the tested biomarkers (via 
a p value assessment for the association parameters) 
and the lowest value for a chosen penalized likelihood 
statistical criterion (i.e., Akaike information criterion 
[AIC]), which describes the relative goodness-of-fit 
of the tested models against the training data set. We 

F I G U R E  2   Exploration plots for 
training (black, left) and validation 
(brown, right) data sets. (a–d) Spaghetti 
plots for log-transformed biomarkers 
showing mean values (solid lines; circles, 
SLD; squares, LDH) and interquartile 
range (shaded area). (e–f) Survival plots 
showing experimental Kaplan-Meier 
curves (solid lines) and 95% confidence 
interval (shaded area). LDH, lactate 
dehydrogenase; SLD, sum of the longest 
diameters of target lesions
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considered the following three survival models: uni-
variate Cox SLD, univariate Cox LDH, and multivariate 
Cox SLD+LDH, represented in the aforementioned code 
and hereafter referred to as “COX.” The outputs of these 
tests (Table S2) suggest that the multivariate COX model 
should be selected for further research.

In terms of parameter estimates in the survival models 
developed here, it should be noted that the size of the bio-
marker effects (i.e., the estimates of the association param-
eters) may change when additional baseline or longitudinal 
covariates are introduced into the model. Therefore, the 
summary effect on event risk may get spread over a broad 
range of the chosen statistically significant biomarkers. In 
particular, it can be noticed from Table S2 that in univari-
ate Cox models, the value of SLD and LDH association pa-
rameters have smaller magnitude than in the multivariate 
model. In further data analysis, one may also include and 
test additional biomarkers for their association with OS, for 
example, smoking status, Eastern Cooperative Oncology 
Group (ECOG) score, and so on.5

Following the analysis of baseline SLD and LDH, we 
next investigate the association of longitudinal biomarker 
trends with OS in the training data set (Figure 1).

Linear JMs

As mentioned previously, various tools may be used for 
JM development. An easy way to investigate longitudinal 
biomarkers and event risk is to develop linear univariate 
or multivariate JMs using the JM/JMbayes packages in 
R.14 The codes for the tested LME JMs are available in the 
Supplementary Materials, Section 2.1.

In these models, the dynamics of longitudinal bio-
markers are described using natural spline functions.14 
The knot position of the splines may be updated or ad-
ditional covariates may be introduced to further optimize 
the description of biomarkers, depending on the available 
measurement frequency.

The survival submodels for univariate JMs14 (JM SLD 
and JM LDH for longitudinal SLD and longitudinal LDH, 
respectively) were developed in the JM package using a 
Weibull formulation for the baseline hazard. To reach 
the optimal model convergence for a multivariate SLD 
and LDH model (JM SLD+LDH), the model was built in 
the JMbayes package using a spline representation of the 
baseline hazard.

Nonlinear JMs

Advanced JMs can be developed and tested with NLME 
models for biomarkers. A full representative Monolix 

model code is provided in the Supplementary Materials, 
Section 2.2. In this analysis, we considered biexponential 
functions to describe SLD and LDH dynamics5,17 using the 
following ODE formulation:

where d and g are parameters representing rate constants of 
biomarker dynamics, and Biomb is the estimated baseline 
value for a biomarker. Equation (6) represents a longitudinal 
submodel for either of the chosen biomarkers: SLD or LDH. 
These models can also be formulated by means of explicit 
nonlinear functions. A set of nonlinear models similar to the 
one for LME tools has been built in Monolix (JM SLD, JM 
LDH, and JM SLD+LDH). Univariate models may be gener-
ated by removing relevant longitudinal biomarker sections 
(either for SLD or LDH) from the model code and consider-
ing this biomarker at baseline only.47

For these NLME JMs, the hazard function embeds the 
Weibull formulation of the baseline hazard, and it can be 
represented as follows:

where parameters k and λ define the shape of the Weibull 
baseline hazard function, and αj is the association parame-
ter for the jth longitudinal biomarker (either SLD or LDH). 
There are no random effects added to k, λ, and αj.

14 In Monolix 
survival models, a special parameter BaseCov is used to in-
troduce baseline covariates (its fixed-effect value should be 
set to 0, and random effects should be turned off).29,47 The 
baseline covariates of interest should be associated with this 
BaseCov parameter; thus, the respective association coeffi-
cients will reflect the values of αb in Equation (4). Finally, 
in univariate JMs, if SLD is considered as longitudinal, then 
LDH is taken at baseline only and vice versa.

Monolix incorporates a set of embedded tools to check 
for optimal model convergence. Typically, for successful 
model convergence and usability toward advanced diag-
nostics and predictions, one should pay attention to the 
available recommendations.30,48–51 More details are pro-
vided in the Supplementary Materials, Section 2.3.

MODEL DIAGNOSTICS

Detailed summaries of univariate and multivariate JMs 
for the selected LME and NLME tools are provided in the 

(6)

dDegr

dt
= −d∗Degr

dGrowth

dt
=g ∗Growth

Biom=Biomb(Degr+Growth−1)

lnBiom= ln(Biom+1),

(7)hi (t) =
k

�
∗

(
t

�

)k−1
∗ e

(
�j∗logBiomij+BaseCov

)
,
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Supplementary Materials, Table  S3. The association pa-
rameters for baseline and longitudinal biomarkers and OS 
are provided in Table 2. These results suggest a similarity 
in biomarker association with OS in the training data set 
across the same JMs developed with different tools.

Advanced graphical diagnostics of the developed JMs 
include various plots to efficiently assess the goodness-of-
fit for the biomarker and time-to-event data description 
(Figure 3). These graphical diagnostics can be generated in 
R environment for both LME tools and Monolix in a simi-
lar manner—see the Supplementary Materials, Section 3.

Individual predictions of biomarker trends and Si(t) in 
Monolix were retrieved by performing a sampling from 
the conditional distribution of individual biomarker sub-
model parameters using a Markov Chain Monte Carlo 
(MCMC) procedure (50 simulated parameters per patient) 
that may be controlled in the Monolix graphical user inter-
face or using the lixoftConnectors/RsSimulx tools in R.14,52

Visual predictive checks (VPCs) provide further in-
formation on how well a model describes or predicts 
longitudinal data. The observed data were represented 

with medians and 10% and 90% quantiles of observations 
using a moving average of a fixed length (e.g., 30 days). 
Biomarker trend predictions were obtained only for time-
points corresponding to actual observations. Similarly 
to the observed data, the predicted values were drawn 
using a moving average: solid lines represented 10%, 50%, 
and 90% quantiles of averaged individual predictions. 
Prediction intervals for each quantile were computed with 
a 95% confidence interval. VPCs were plotted against the 
training data, thus describing the goodness of fit.

Patient survival plots (middle column, bottom graph in 
Figure 1) represent an important step in the model qualifi-
cation assessment. They illustrate the alignment of the sur-
vival function from a qualified JM and actual KM estimates 
for the training data. Per timepoint, the mean value of the 
sampled individual survival probability (see Equation 5) is 
further averaged across all subjects to derive the predicted 
marginal survival. The range over the predicted marginal 
survival represents the 25th and 75th percentiles of the aggre-
gated individual survival predictions. For JMs developed in 
Monolix, the individual survival function Si(t) was manually 

T A B L E  2   Association parameters for all tested joint models

R-based tools Monolix tools

Model type JM SLD JM LDH JM SLD+LDH JM SLD JM LDH
JM 
SLD+LDH

αSLD 0.77 (13.3) 0.53 (20.5) 0.7778 (12.9) 0.85 (7.41) 0.54 (6.06) 0.75 (7.35)

αLDH 0.44 (29.7) 0.75 (14.8) 0.4581 (22.1) 0.38 (13.0) 0.78 (3.57) 0.60 (7.85)

k 1.31a 1.34a N/Ab 1.28 (2.3) 1.26 (2.2) 1.26 (1.82)

λ 6520a 14,300a N/Ab 8380 (15.9) 28,100 (22.6) 19,300 (16.4)

Note: Values in bold font indicates the association parameters for longitudinal biomarkers tested in the models. Values are provided as point estimates (%RSE).
Abbreviations: JM, joint model; LDH, lactate dehydrogenase; SLD, sum of the longest diameters of target lesions.
aDerived from JM summary (see Supplementary Materials, Table S3).
bBecause Weibull baseline hazard parametrization is not available (N/A) in JMbayes, splines were used instead.

F I G U R E  3   (a, b) Visual predictive check plots for the training data set (Qualification Step). Model results obtained using a multivariate 
nonlinear biexponential joint model in Monolix. Solid black lines represent aggregated log-transformed biomarker data from the training 
data set (circles, SLD; squares, LDH). Solid colored lines represent 10%, 50%, and 90% quantiles of averaged individual predictions (red, 
SLD; blue, LDH). Prediction intervals for each quantile are computed with a 95% confidence interval (shaded area). (c) Survival plot shows 
experimental Kaplan-Meier curve (solid black) from the training data set and the mean model prediction (solid gray) with the interquartile 
range (shaded area). LDH, lactate dehydrogenase; SLD, sum of the longest diameters of target lesions
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coded in R, according to Equation (5), subsequently aggre-
gated, and taken as an output from the RsSimulx script (see 
the Supplementary Materials, Section 3.1).

Similarly, these plots may be generated in R when using 
LME JM tools (see Figure S3). However, graphical diagnos-
tics for multivariate JMs in JMbayes are limited. Thus, VPC 
plots for SLD and LDH as well as patient survival plots for 
the training data were generated for univariate models (JM 
SLD and JM LDH) handled within the JM package.

Finally, comparable goodness-of-fit (Figure 3 and S3) 
as well as parameter estimates (Table 2) were obtained for 
LME and NLME models against the training data. Upon 
achieving successful model convergence and adequate 
diagnostics, we considered further model applicability 
to predict biomarker dynamics as well as survival and 
perform discrimination analyses against the interim val-
idation data. These steps are schematically described in 
Figure 1 (right column).

EXTERNAL VALIDATION

A validation procedure usually necessitates an analysis 
of model performance against an external data set—data 
that were not used in the earlier model qualification. As 
stated previously and represented in Figure  1, we per-
formed such an analysis against an interim validation data 
set with biomarker and survival data known for the first 
3 months of observation.

In Monolix, individual predictions of biomarker trends 
and patient survival were obtained via sampling from the 
conditional distribution of random effects, whereas the 
rest of the model parameters were fixed at their estimated 
values obtained during qualification. In LME JMs, these 
parameters were sampled from the posterior parameter 
distribution obtained from the qualification procedure.14 

We further performed survival discrimination assessment 
for all generated LME and NLME JMs, thus comparing 
model predictions against actual survival outcomes in the 
validation study.

Survival discrimination performance is typically ana-
lyzed using the well-established metrics of area under the 
receiver operating characteristic curve (ROC-AUC) and BS 
(Brier score).53,54 ROC-AUC values range from 0 to 1, with 
a higher value representing higher discrimination perfor-
mance, whereas a value of 0.5 would signify no discrimina-
tion ability. BS represents a mean square error of individual 
survival probability predictions, and its values range from 0 
to 1, with lower values representing higher precision.5

Both ROC-AUC and BS were calculated for survival 
predictions Si(t) obtained at specific timepoints of interest 
(e.g., at different months following the longitudinal data 
cutoff in the validation study). Models with higher dis-
crimination performance may potentially be further used 
to adequately stratify patient subgroups. Although this ad-
ditional step is not described in the present tutorial, it has 
been detailed in a previously published JM analysis.5

The chosen data cutoff of 3 months in the validation 
data set represents an early biomarker assessment in se-
lected NSCLC studies. It provides enough data to perform 
predictions of biomarker dynamics given the sample mea-
surement frequency in the considered studies, combined 
with an appropriate JM structure (especially for NLME 
multivariate JMs—see Figure 5). However, depending on 
the clinical studies and data, a different cutoff time may 
be tested to identify the optimal amount of interim lon-
gitudinal data that would allow for adequate biomarker 
predictions and efficient survival discrimination.5

ROC-AUC and BS can be calculated in a unified man-
ner for model predictions generated using LME and 
NLME JM tools, as shown in the Supplementary Materials, 
Section 4. Implemented ROC-AUC and BS calculations 

F I G U R E  4   Area under the receiver operating characteristic curve (solid line) and Brier score (dashed line) diagnostics for the interim 
validation data set based on the selected survival models. (a) Linear models in JM/JMbayes packages. (b) Nonlinear models in Monolix. 
Both plots feature the same COX model, which was qualified using the coxph() function in R (see the Supplementary Materials, Section 4.2, 
Table S2 and “Cox Proportional Hazards Models for Baseline Biomarkers” section in the main text). COX, conventional semiparametric 
survival model; JM, joint model; LDH, lactate dehydrogenase; SLD, sum of the longest diameters of target lesions
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are adapted to right-censored data using the inverse prob-
ability of censoring weighting.55,56 Both ROC-AUC and BS 
were calculated using the means of sampled individual 
survival predictions without considering the uncertainty 
in model parameters and random effects. Also, the JM 
package includes embedded functions for ROC-AUC and 
BS calculations.14 Outputs of the discrimination analysis 
are presented in Figure 4.

The conventional semiparametric survival model 
(COX), which incorporated only baseline biomarker val-
ues, was a poor performer in these diagnostics, whereas 
the multivariate JMs in JMbayes and Monolix performed 
well, indicating that longitudinal trajectories of SLD and 
LDH biomarkers were important to achieve higher sur-
vival discrimination for the validation data. If further 
discrimination performance gain was sought, one may 
want to identify and add other baseline or longitudinal 
covariates deemed important to the augmented multi-
variate JMs. Interestingly, a higher number of significant 
baseline covariates in a conventional Cox proportional 
hazards model may result in a similar or higher discrim-
ination performance versus JMs with a smaller number 

of longitudinal and baseline biomarkers (data not shown). 
However, such baseline biomarker models would not 
allow for making inference for biomarker dynamics that 
may carry clinical importance or may even be foreseen as 
study endpoints. For all the univariate and multivariate 
survival models considered in this tutorial, an assessment 
should be performed to determine whether a biomarker's 
association parameter p value is below 0.05 (informa-
tion usually available in the model summaries—refer to 
Table S3). Likewise, a relevant statistical criterion repre-
senting the goodness-of-fit and incorporating parameter 
count penalization (i.e., AIC) should be evaluated to com-
pare the models and combat overparameterization.57,58

To provide VPCs and patient survival prediction diag-
nostics (Figure 1, right column) using the selected LME 
and NLME JM tools, a set of functions and scripts such 
as those used in the model qualification steps were ap-
plied (see the Supplementary Materials, Sections 3 and 5). 	
For LME JMs, which were implemented in the JM and 
JMbayes packages, the predict() and survfitJM() functions 
were used to obtain predictions of individual longitudinal 
trends and individual survival Si(t) for the validation data. 

F I G U R E  5   (a–d) Visual predictive 
check plots for the interim validation data 
set (Validation step), based on univariate 
linear joint models in JM (a, c) and a 
multivariate nonlinear biexponential joint 
model in Monolix (b, d). Solid black lines 
represent aggregated log-transformed 
biomarker data from the validation data 
set (circles, SLD; squares, LDH). Solid 
colored lines represent 10%, 50%, and 
90% quantiles of averaged individual 
predictions (orange, SLD; green, LDH). 
Prediction intervals for each quantile are 
computed with a 95% confidence interval 
(shaded area). (e–f) Survival plot shows 
the experimental Kaplan-Meier curve 
(solid brown) from the validation data 
set and the mean model prediction (solid 
gray) with the interquartile range (shaded 
area) for a multivariate linear joint 
model in JMbayes (e) and a multivariate 
nonlinear biexponential joint model in 
Monolix (f). LDH, lactate dehydrogenase; 
SLD, sum of the longest diameters of 
target lesions
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These functions represent outcomes of the sampling from 
subject-specific conditional probabilities of individual 
random effects and corresponding survival or biomarker 
predictions14 obtained from previously qualified JMs.

In Monolix, predictions of longitudinal biomarker tra-
jectories and individual survival Si(t) were generated in the 
lixoftConnectors/RsSimulx packages (see the Supplementary 
Materials, Section 5.1). The estimated population parame-
ters from previously qualified JMs were fixed and used for 
individual parameter sampling in a MCMC procedure52 
against the interim validation data set.

For validation VPC plots, longitudinal biomarker pre-
dictions and Si(t) were simulated only for those patients 
who survived (event or censoring times for these patients 
should exceed the selected cutoff of 3 months), at time-
points for which further experimental observations were 
available. The other features of the validation figures were 
the same as in the qualification step. VPCs and patient 
survival prediction plots were similarly generated for LME 
and NLME tools (Figure 5).

Within the tested JM tools, comparable diagnostic 
performance for OS predictions were achieved using the 
JM/JMbayes packages and Monolix. However, Monolix 
provided improved predictions of longitudinal biomarker 
trends. In the initial section of the present tutorial, we men-
tioned possible limitations of LME JMs, owing to the longer 
term behavior of the longitudinal submodels. Splines may 
cause nonmeaningful trends in the areas with few observa-
tions or extrapolation areas (in case of the validation data 
set, beyond the 3-month cutoff interval). Although these 
LME models provided an adequate goodness of fit versus 
NLME models in Monolix (e.g., compare Figure  S3 and 
Figure 3) for the training data, the capability of LME JMs to 
adequately predict the longer term longitudinal biomarker 
dynamics for the validation data was limited (Figure 5).

We considered standard spline models in the JM/JMBayes 
packages and biexponential models in Monolix. Additional 
research may be required to determine whether these models 
are fully optimal compared with those that can be generated 
using customized knot positions for splines or using various 
empirical or mechanistic NLME biomarker submodels in 
Monolix. One option may also be to identify and introduce 
significant covariates for the longitudinal submodels of JMs 
(i.e., the biomarker trend may depend on patient's baseline 
characteristics, disease status, external conditions, chosen 
therapy, etc.). However, one needs to consider that these ad-
vanced JMs may require substantial computational times.

CONCLUSIONS

In this tutorial, we proposed and implemented a unified 
workflow for joint modeling to perform a comprehensive 

analysis of multiple longitudinal biomarkers and a time-
to-event endpoint. The workflow incorporates an initial 
data exploration phase, steps in performing JM build-
ing and qualification using a training data set, as well as 
testing against an external data set for model validation. 
It has been implemented in R-based LME tools and in 
more advanced NLME tools such as Monolix. These tools 
allow one to comprehensively assess information and 
data previously collected through clinical trials to predict 
the outcomes of another trial based on its interim data.

The outcomes of the analysis suggest that for the con-
sidered NSCLC data sets, nonlinear multivariate JMs in 
Monolix provide the highest performance in predicting 
longitudinal biomarker trends and survival discrimina-
tion. Moreover, advanced NLME joint modeling tools 
such as NONMEM, Monolix, or Stan may further over-
come actual study data limitations with respect to the 
clinical development process. When multiple biomarkers 
are being evaluated in patients it often happens that both 
the measurement schedule and the duration of observa-
tions vary across biomarkers, hence the biomarker data 
are not aligned in time. For the sake of simplicity, in this 
tutorial, we considered a scenario whereby all interim bio-
marker data were collected up to the same cutoff in time. 
However, the approach we delineated may also be applied 
to an analysis that includes multiple biomarkers that have 
different observation times.

JMs are emerging as a data analytics methodology, 
which may provide a link between advanced mech-
anistic biomarker submodels (which may include 
quantitative systems pharmacology submodels) and 
time-to-event data to perform state-of-the-art clinical 
trial simulations. Joint modeling, in effect, represents 
a powerful methodology in pharmacometric analyses, 
supported by efficient tools, to characterize the dynamic 
behavior of biomarkers and its association with clinical 
trial outcomes.
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