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INTRODUCTION

Clinical	 trials	are	a	gold	standard	in	the	development	of	
novel	 therapeutics.	 Through	 clinical	 studies,	 informa-
tion	and	data	are	generated	and	may	be	 integrated	on	a	
continuous	 basis,	 thereby	 improving	 our	 understanding	
of	 disease	 pathology	 and	 progression,	 pharmacologic	

intervention,	 trial	 design,	 and,	 ultimately,	 personalized	
medicine.1,2

Clinical	outcomes	may	be	assessed	based	on	a	number	
of	 criteria.3	 In	 earlier	 stages	 of	 development,	 longitudi-
nal	biomarkers	may	be	measured	according	to	a	defined	
schedule,	allowing	for	the	investigation	of	patient	response	
trends	and	 to	determine	whether	a	biomarker	 reaches	a	
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Abstract
Clinical	trials	investigate	treatment	endpoints	that	usually	include	measurements	
of	pharmacodynamic	and	efficacy	biomarkers	in	early-	phase	studies	and	patient-	
reported	outcomes	as	well	as	event	risks	or	rates	in	late-	phase	studies.	In	recent	
years,	a	systematic	trend	in	clinical	trial	data	analytics	and	modeling	has	been	ob-
served,	where	retrospective	data	are	integrated	into	a	quantitative	framework	to	
prospectively	support	analyses	of	interim	data	and	design	of	ongoing	and	future	
studies	of	novel	therapeutics.	Joint	modeling	is	an	advanced	statistical	method-
ology	that	allows	for	 the	 investigation	of	clinical	 trial	outcomes	by	quantifying	
the	association	between	baseline	and/or	longitudinal	biomarkers	and	event	risk.	
Using	an	exemplar	data	set	from	non-	small	cell	lung	cancer	studies,	we	propose	
and	test	a	workflow	for	joint	modeling.	It	allows	a	modeling	scientist	to	compre-
hensively	explore	the	data,	build	survival	models,	investigate	goodness-	of-	fit,	and	
subsequently	perform	outcome	predictions	using	 interim	biomarker	data	 from	
an	ongoing	study.	The	workflow	illustrates	a	full	process,	from	data	exploration	
to	predictive	simulations,	for	selected	multivariate	linear	and	nonlinear	mixed-	
effects	models	and	software	tools	in	an	integrative	and	exhaustive	manner.
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target	value.	In	later	phases	of	clinical	studies	and	often	
in	 addition	 to	 longitudinal	 biomarkers,	 it	 is	 common	 to	
assess	endpoints	such	as	time-	to-	event	data	or	event	rates.	
Depending	 on	 the	 disease	 or	 indication,	 outcomes	 may	
encompass	 overall	 survival	 (OS)	 or	 progression-	free	 sur-
vival	 (in	 oncology),	 exacerbation	 risk	 and/or	 rates	 (e.g.,	
chronic	obstructive	pulmonary	disease	[COPD],	asthma),	
relapse	rates	 (e.g.,	multiple	sclerosis),	myocardial	 infarc-
tion,	 stroke,	 or	 other	 cardiovascular	 events	 (e.g.,	 cardio-
vascular	diseases,	chronic	kidney	disease	[CKD]),	and	so	
on.3

Intuitively,	one	may	expect	that	baseline	and/or	lon-
gitudinal	biomarkers	are	correlated	to	some	degree	with	
observed	event	outcomes.	For	example,	the	forced	expi-
ratory	volume	in	1	s	is	associated	with	exacerbation	risk	
in	COPD4;	the	sum	of	the	longest	diameters	of	target	le-
sions	(SLD)	is	associated	with	risk	of	death	in	non-	small	
cell	 lung	 cancer	 (NSCLC).5	 The	 association	 between	
biomarker	and	time-	to-	event	data	has	also	been	identi-
fied	and	studied	in	multiple	analyses	of	various	diseases,	
including	heart	failure,	CKD,	diabetes,	Alzheimer's	dis-
ease,	 infectious	 diseases,	 colorectal	 and	 prostate	 can-
cers,	and	so	on.6–	13 These	analyses	have	investigated	the	
association	 of	 biomarkers	 and	 time-	to-	event	 data	 via	
joint	 models	 (JMs).14	 JMs	 represent	 an	 extended	 class	
of	parametric	survival	models,	which	are	based	on	pro-
portional	hazards	models	and	are	able	to	integrate	both	
baseline	values	and	dynamics	of	longitudinal	covariates.	
JMs	 may	 ultimately	 be	 used	 to	 address	 essential	 ques-
tions	 in	 the	 assessment	 and	 prediction	 of	 clinical	 trial	
outcomes,	including	investigation	and	prediction	of	lon-
gitudinal	biomarker	trends,	biomarker	association	with	
an	 event	 risk,	 individual	 survival	 predictions,	 and	 un-
biased	estimation	for	both	biomarker	and	time-	to-	event	
outcomes.3,6,14

In	this	tutorial,	we	focus	on	technical	aspects	of	a	mod-
eling	workflow	for	a	common	class	of	JMs	that	incorporate	
noninformative	right	censoring	and	proportional	hazards	
survival	 submodels.	 Right	 censoring	 is	 a	 specific	 prop-
erty	of	 time-	to-	event	data	and	is	 frequently	encountered	
in	clinical	trials.	An	event	of	interest	does	not	necessarily	
occur	for	all	subjects	during	the	trial	observation	period,	
and	the	time	to	that	event,	 if	an	event	occurs	at	all,	will	
vary	among	trial	subjects.	A	censoring	event	occurs	when	
a	subject	leaves	the	study	for	a	specific	reason.	Depending	
on	 the	 dropout	 nature,	 censoring	 could	 be	 classified	 as	
informative	 or	 noninformative.14	 Informative	 censoring	
assumes	that	the	censoring	event	is	directly	related	to	the	
subject's	 disease	 progression,	 whereas	 noninformative	
censoring	assumes	the	censoring	is	independent	from	the	
subject's	condition	and	therefore	from	the	event	of	inter-
est.	The	noninformative	hypothesis	is	commonly	used	for	
survival	modeling	in	clinical	trials.6,10,14

The	 JMs	 described	 in	 this	 tutorial	 may	 be	 developed	
using	 various	 software	 tools	 integrating	 linear	 and	 non-
linear	 mixed-	effects	 (LME	 and	 NLME,	 respectively)	 ap-
proaches	to	handle	longitudinal	data.

This	 modeling	 workflow	 seamlessly	 integrates	 multi-
ple	 steps,	 including	 data	 exploration,	 survival	 model	 se-
lection,	and	qualification	(goodness-	of-	fit	and	parameter	
interpretation)	using	training	data	and	subsequent	model	
validation	against	 interim	external	data	accumulated	up	
to	 a	 certain	 timepoint	 (Figure  1).	 Such	 a	 workflow	 can	
be	 applied	 by	 a	 data	 analyst	 or	 modeling	 scientist	 who,	
upon	collecting	retrospective	 information	and	data	 from	
completed	clinical	 trials,	aims	at	predicting	outcomes	of	
another	 clinical	 study,	 for	 which	 only	 interim	 data	 are	
available.

Using	particular	NSCLC	data	sets,15,16	we	implemented	
and	tested	the	JM	workflow	to	investigate	the	association	
between	selected	biomarkers	and	OS	and	to	quantify	the	
incremental	benefit	that	is	gained	using	longitudinal	bio-
marker	data	versus	baseline	biomarker	only.

STRUCTURE OF JMS

Biomarker	and	event	data	may	be	described	using	various	
regression	models.17,18	LME	and	NLME	models	are	typi-
cally	developed	to	characterize	longitudinal	biomarkers:

Equation (1)	represents	a	linear	model,	where	Xi	and	Zi	
are	known	design	matrices	 for,	 respectively,	 fixed-	effects	
regression	 coefficients	 β	 and	 random-	effects	 coefficients	
bi,	with	i	representing	the	patient	index,	where	Ini	denotes	
the	ni-	dimensional	 identity	matrix.14	Random	effects	are	
assumed	to	follow	a	multivariate	normal	distribution	(be-
cause	 multiple	 biomarkers	 and	 model	 parameters	 may	
be	considered)	with	a	mean	vector	of	0	and	a	variance–	
covariance	matrix	D	and	are	also	assumed	to	be	indepen-
dent	from	the	error	terms	εi,	that	is,	cov(bi,	εi) = 0.	Further	
details	 on	 univariate	 and	 multivariate	 model	 structures	
for	longitudinal	biomarkers	and	their	interpretation	may	
be	taken	from	the	literature.14,19

Proper	 selection	 of	 model	 structure	 and	 subsequent	
qualification	of	LME	and	NLME	models	may	provide	the	
modeler	with	biomarker	 trends	 in	 the	population	under	
study	 as	 well	 as	 information	 on	 random	 effects	 and	 re-
sidual	 error	 as	 typically	 performed	 in	 pharmacometric	
research.20	 Similarly	 to	 previous	 analyses,	 one	 may	 use	
predetermined	 NLME	 models	 defined	 in	 the	 form	 of	

(1)

⎧⎪⎨⎪⎩

yi (t) =Xi (t) �+Zi (t) bi+�i (t) ,

bi∼N (0,D) ,

�i∼N
�
0, �2Ini

�
,
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explicit/empirical	functions	or	using	ordinary	differential	
equations	(ODEs).17	However,	for	many	biomarkers,	such	
information	may	not	be	available,	and	additional	research	
would	be	required	to	identify	an	adequate	model.

Time-	to-	event	 data	 may	 be	 analyzed	 using	 survival	
models,	which	are	defined	by	a	hazard	function14:

Equation  (2)	 describes	 the	 instantaneous	 risk	 of	 an	
event	in	the	time	interval	[t,	t + dt],	provided	survival	up	
to	time	t.	Given	this	definition,	hi(t)	is	also	referred	to	as	
the	instantaneous	risk	function.	T∗

i
	denotes	the	true	time	

of	events	for	the	patient	of	interest.	The	hazard	function	

defined	 previously	 can	 be	 used	 to	 derive	 individual	 sur-
vival	probabilities	according	to	the	following	equation14:

The	 survival	 function	 (whether	 it	 represents	 actual	
survival,	or	progression,	exacerbations,	relapses,	etc.,	de-
pending	on	the	disease	and	indication	under	study)	can	be	
expressed	by	means	of	a	cumulative	hazard	function	Hi(t)	
that	describes	the	accumulated	risk	up	to	time	t.	Function	
Hi(t)	 can	 also	 be	 interpreted	 as	 the	 expected	 number	 of	
events	 to	 be	 observed	 up	 to	 time	 t.	 Individual	 survival	
functions	Si(t)	can	be	further	used	to	estimate	the	survival	
of	 the	 overall	 population	 and	 may	 be	 compared	 with	 a	

(2)hi (t) = lim
dt→0

Pr(t≤T∗
i
< t+dt|T∗

i
≥ t)

dt
, t>0

(3)Si (t) = exp
{
−Hi (t)

}
= exp

{
− ∫

t

0
hi (s) ds

}

F I G U R E  1  Schematic	representation	illustrating	the	steps	required	for	a	joint	modeling	analysis.	Left	to	right:	data	exploration	involves	
plotting	biomarker	and	survival	data	as	well	as	study	baseline	characteristics.	Qualification	of	survival	models	is	performed	against	a	
training	data	set	to	obtain	model	parameters,	visual	predictive	checks	for	biomarkers,	and	survival	goodness-	of-	fit	plots.	Validation	of	a	joint	
model	is	completed	by	using	the	previously	estimated	model	parameters	to	perform	a	survival	discrimination	analysis	by	means	of	ROC-	
AUC	and	BS	as	well	as	simulate	biomarker	trends	and	make	survival	predictions	against	interim	validation	data.	BS,	Brier	score;	ECOG,	
Eastern	Cooperative	Oncology	Group	score;	LDH,	lactate	dehydrogenase;	ROC-	AUC,	area	under	the	receiver	operating	characteristic	curve;	
SLD,	sum	of	the	longest	diameters	of	target	lesions;	WHO,	World	Health	Organization	score.
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nonparametric	survival	estimator	by	means	of	a	Kaplan-	
Meier	(KM)	curve.

JMs	may	be	used	to	associate	baseline	(wi)	and	longitu-
dinal	covariates	(represented	by	the	individual	biomarker	
time	 course:	 mi(t) = Xi(t)� + Zi(t)bi	 from	 Equation  (1)	
with	event	risk	from	Equation (2).	For	such	proportional	
hazards	models,	hi(t)	may	be	formulated	as	follows:

In	Equation (4),	αb	represents	the	association	parame-
ters	for	the	baseline	biomarkers	(as	typically	implemented	
in	Cox	models),	and	�	is	the	association	parameter	for	the	
longitudinal	biomarker.	Equation (4)	is	formulated	for	one	
baseline	and	one	longitudinal	biomarker.	For	multivariate	
models,	each	of	the	considered	biomarkers	should	have	αb	
or	α	assigned	depending	on	a	biomarker	type.

If	biomarkers	are	considered	at	baseline	only,	then	Cox	
proportional	hazards	models	can	be	used	and	h0(t)	is	not	
specified	because	the	Cox	model	parameter	optimization	
is	handled	using	partial	log-	likelihood	function.	However,	
in	 JMs	 with	 longitudinal	 biomarkers,	 h0(t)	 should	 be	
specified	in	either	way	(i.e.,	piecewise	constant	function,	
splines,	 a	 Weibull	 distribution).14,21	 Parameters	 of	 a	 JM	
can	be	identified	using	the	principle	of	maximum	likeli-
hood	based	on	the	following	formulation	for	the	logarith-
mic	joint	conditional	likelihood	function14,22:

where:

In	Equation (5),	δi	is	an	event	indicator	(i.e.,	assumes	
a	value	of	1	for	an	event	and	of	0	for	censoring	from	the	
study),	 Ti	 is	 the	 observed	 event	 time	 or	 censoring	 time	
(Ti  =  min(T∗

i
,	 Ci),	 where	 Ci	 is	 the	 censoring	 time	 and	 θ	

denotes	 the	 full	 vector	 of	 model	 parameters).	 Averaged	
Si(t)	represents	the	marginal	survival	for	the	entire	patient	
cohort	and	can	be	compared	with	KM	estimates	of	OS.14

Other	 approaches	 that	 incorporate	 a	 sequential	 anal-
ysis	of	biomarkers	and	time-	to-	event	data	(including	ex-
tended	Cox	models	that	handle	time-	varying	biomarkers)	
have	 also	 been	 investigated	 in	 the	 literature.	 However,	
such	analyses	may	require	methodological	improvements	
to	 address	 the	 potential	 bias	 presented	 in	 parameter	
estimates.14,21,23

OVERVIEW OF SELECTED TOOLS 
FOR JOINT MODELING

There	is	a	wide	variety	of	statistical	software	tools	availa-
ble	for	JM	development	and	assessment—	see	Table 1	for	a	
nonexhaustive	list.	Each	JM	software	comes	with	specific	
sets	of	options	as	well	as	data	set	format	requirements.	For	
example,	if	a	simple	univariate	analysis	is	targeted	in	the	
JM	package24	in	R,	then	only	one	longitudinal	biomarker	
may	be	considered,	whereas	the	other	available	biomark-
ers	can	only	be	accounted	at	baseline	levels.	Beyond	this	
limitation,	the	JM	package	provides	a	comprehensive	set	
of	options,	such	as	predefined	functions	for	model	quali-
fication/diagnostics	 (embedded	 in	 the	 JM	 object	 in	 the	
R	 environment)	 and	 validation/simulation	 (available	 via	
predict()	and	survfitJM()	functions),	and	it	is	computation-
ally	fast.

If	 models	 with	 multiple	 longitudinal	 biomarkers	 are	
considered,	 the	 JMbayes	 and	 rstanarm	 software	 pack-
ages,25,26	which	provide	Bayesian	inference	for	biomarker	
characterization,	 can	 be	 used.	 However,	 in	 these	 multi-
variate	JM	packages,	 the	advanced	diagnostics	 for	 longi-
tudinal	biomarkers	are	less	convenient	to	handle,	and	the	
embedded	 features	 for	 biomarker/survival	 simulations	
have	 limited	 functionality.	 Also,	 these	 packages	 require	
similar	measurement	times	for	all	considered	longitudinal	
biomarkers	(often	it	is	not	the	case	in	actual	clinical	data	
sets).	 Moreover,	 all	 of	 these	 packages	 (JM,	 JMbayes	 and	
rstanarm)	reach	limitations	when	it	comes	to	the	descrip-
tion	of	biomarker	dynamics	because	only	linear	functions	
for	 biomarker	 description	 may	 be	 used.	Thus,	 if	 the	 dy-
namics	of	biomarkers	need	to	be	investigated	with	more	
mechanistic	 models,	 these	 R-	based	 LME	 packages	 may	
not	represent	ideal	choices.	Nevertheless,	with	some	data	

(4)hi (t) = h0 (t) ∗ exp
{
�bwi + �mi (t)

}
,

li (�) = log ∫
{

ni∏
j

p(yij|bi; �)
}{

h(Ti|bi; �)�iSi(Ti|bi; �)
}
p
(
bi; �

)
dbi,

(5)Si(t|bi; �)=exp
(
−∫

t

0

h0 (s; �) exp
{
�bwi+�mi (s)

}
ds

)

T A B L E  1 	 Joint	modeling	tools,	their	features,	diagnostics,	and	simulation	capabilities

JM 
package

JMbayes 
package

rstanarm 
package NONMEM Monolix Stan

LME	models Yes Yes Yes Yes Yes Yes

NLME	models No No No Yes Yes Yes

Multivariate	models No Yes Yes Yes Yes Yes

Biomarker	and	survival	predictions Available Limited Limited Available Available Available

Abbreviations:	LME,	linear	mixed	effects;	NLME,	nonlinear	mixed	effects.
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sets,	linear	models,	for	example,	based	on	splines,	may	ad-
equately	characterize	biomarker	dynamics.4

NLME	models	have	become	a	standard	in	quantitative	
clinical	 pharmacology	 for	 longitudinal	 biomarker	 analy-
sis.27	These	models	represent	a	natural	choice	to	describe	
these	 biomarkers	 and	 to	 associate	 their	 dynamics	 with	
event	risk	in	a	JM	framework.	For	such	advanced	nonlin-
ear	JMs,	the	widely	known	NONMEM	and	Monolix	phar-
macometric	software	 tools	may	be	used.28–	30	NLME	JMs	
can	also	be	implemented	in	Stan	software,	with	even	more	
advanced	options	including	user-	defined	likelihood	func-
tion	formulation.5,6,31,32

In	this	tutorial,	and	for	illustrative	purposes,	we	imple-
mented	 a	 JM	 workflow	 using	 the	 following	 set	 of	 mod-
eling	tools:	JM	v1.4–	8	and	JMbayes	v0.8–	85	packages	for	
LME	 JMs,	 and	 Monolix	 2020R1	 for	 NLME	 JMs.	 All	 R-	
based	packages	were	tested	in	the	R	4.0.2	environment.33

CASE STUDY: DATA DESCRIPTION 
AND EXPLORATION

Data	 from	 subsets	 of	 control	 arms	 from	 two	 NSCLC	
clinical	 studies,	 NCT0031237716	 and	 NCT00364351,15	
were	 taken	 from	 the	 Project	 Data	 Sphere	 repository.34	
In	both	subsets,	patient	data	had	been	deidentified	and	
did	 not	 include	 data	 from	 Chinese	 patients.	 Biomarker	
and	 OS	 data	 from	 the	 NCT00312377	 study	 were	 used	
for	model	qualification	(training	data	set);	data	from	the	
NCT00364351	study	were	used	 for	external	model	vali-
dation	 (validation	 data	 set),	 according	 to	 the	 workflow	
illustrated	in	Figure 1.

The	treatments	administered	to	these	subjects	with	ad-
vanced	NSCLC	were	as	follows:	chemotherapy	(docetaxel)	
in	the	training	data	set	and	targeted	therapy	(erlotinib)	in	
the	validation	data	set.	To	build	a	JM	framework,	we	fo-
cused	 on	 prognostic	 biomarkers,	 which	 may	 potentially	
provide	 information	 on	 survival	 outcomes	 regardless	 of	
treatment	type.	Interestingly,	patient	baseline	characteris-
tics	across	the	two	selected	data	sets	matched	rather	well,	
including	the	percentage	of	patients	with	mutations	in	the	
epidermal	growth	factor	receptor—	see	Table S1.

For	simplicity,	we	 limited	the	number	of	 investigated	
biomarkers	to	two:	tumor	size	and	levels	of	lactate	dehy-
drogenase	(LDH).35,36	Tumor	size	was	represented	by	SLD,	
measured	according	to	 the	Response	Evaluation	Criteria	
in	Solid	Tumors	1.1.37	LDH	was	selected	as	a	biomarker	
because	it	is	a	measure	linked	to	the	magnitude	of	tumor	
metabolic	 activities.	 Data	 for	 both	 selected	 biomarkers	
were	 available	 at	 baseline	 as	 well	 as	 longitudinal	 mea-
surements,	with	a	sampling	schedule	defined	in	Table S1.	
Exploratory	plots	of	the	selected	biomarkers	as	well	as	OS	
data	are	shown	in	Figure 2.

When	 examining	 these	 data	 sets	 across	 the	 two	 cho-
sen	 clinical	 studies,	 likeness	 in	 trends	 can	 be	 observed	
for	 SLD,	 whereas	 differences	 in	 both	 LDH	 and	 OS	 were	
noted.	Given	the	similarity	in	patients’	baseline	character-
istics	across	the	two	studies,	the	apparently	different	pat-
terns	in	longitudinal	LDH	and	OS	may	be	caused	by	the	
administered	therapies.	The	observed	trends	in	biomarker	
dynamics	 may	 also	 be	 dependent	 on	 the	 study	 design,	
measurement	schedule,	and	patient	censoring,	whereas	at	
longer	times,	only	surviving	patients	with	smaller	tumor	
sizes	and	lower	LDH	levels	typically	remain	in	the	study.

With	 the	 exploratory	 plots	 at	 hand	 (Figure  2),	 we	 next	
describe	the	subsequent	steps	in	the	data	processing	and	JM	
model	qualification	and	validation	illustrated	schematically	in	
Figure 1.	Specifically,	there	we	represent	the	analysis	and	di-
agnostics	for	the	association	of	baseline	and	longitudinal	bio-
markers	with	OS.	For	more	details	on	the	JM	workflow	and	its	
description,	see	the	Supplementary	Materials,	Figure S1.

DATA SET PREPARATION

A	 standard	 vertical	 data	 set	 can	 be	 prepared	 for	
Monolix38–	40	as	described	in	the	Supplementary	Materials,	
Section	 1.1.	 The	 data	 frame	 may	 be	 saved	 as	 a	 comma-	
separated	values	(CSV)	file	to	develop	and	test	models	via	
the	graphical	user	interface	or	may	be	kept	as	an	object	in	
the	R	environment,	if	lixoftConnectors/RsSimulx	packages	
are	used	to	control	Monolix.41

The	R-	based	LME	tools	used	in	this	tutorial	require	a	
data	set	format	that	is	common	for	conventional	analyses	
of	 longitudinal	 data	 (in	 nlme42	 or	 lme443	 packages)	 and	
time-	to-	event	 data	 (in	 survival44	 package)	 in	 R.	 All	 data	
can	be	incorporated	into	a	single	data	frame.	We	provide	
suggestions	on	data	set	structuring	for	JM/JMbayes	in	the	
Supplementary	Materials,	Sections	1.2	and	1.3.

An	actual	view	of	the	formatted	data,	ready	for	further	
analyses	 in	JM/JMbayes	and	Monolix,	 is	provided	 in	the	
Supplementary	Materials,	Figure S2.

Different	biomarker	data	 transformations	may	be	con-
sidered	 for	 optimal	 model	 convergence	 (e.g.,	 log2,	 log10,	
square	 root).14	 In	 the	present	data	 set	and	because	of	 the	
high	 dynamic	 ranges	 observed	 (Figure  2),	 SLD	 and	 LDH	
data	were	log-	transformed	into	ln(SLD+1)	and	ln(LDH+1).

SURVIVAL MODEL BUILDING

In	survival	modeling,	the	point	estimates	of	parameters	ob-
tained	in	the	model	outputs	should	be	studied.	The	size	of	
the	 parameter	 association	 with	 OS	 can	 be	 assessed	 using	
the	hazard	ratio	(HR)	value,	which	is	calculated	as	exp(αb)	
from	Equation (4)	for	baseline	or	as	exp(α)	for	longitudinal	
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430 |   ZHUDENKOV et al.

biomarkers.	A	covariate	increase	by	one	unit	would	result	
in	an	instantaneous	hazard	change	by	a	corresponding	HR	
value.14	 Thus,	 in	 addition	 to	 providing	 statistical	 signifi-
cance	for	a	biomarker	(a	p	value	of	<0.05	should	be	taken14),	
HR	provides	the	inference	for	clinical	significance	similarly	
to	a	conventional	pharmacometric	analysis.45

In	some	cases,	a	particular	pattern	in	biomarker	dynamics	
may	not	have	a	profound	effect	on	time-	to-	event	outcomes,	
although	these	statistically	significant	biomarkers	may	be	as-
sociated	with	an	improved	quality	of	life,	patient-	reported	out-
comes,	or	other	aspects	related	to	disease	burden.4	There	may	
also	be	situations	when	biomarker	measurement	noise	is	high	
and/or	data	sampling	is	too	sparse	(e.g.,	biomarkers	of	interest	
are	measured	only	at	baseline	and	at	the	end	of	a	study),	so	
that	the	actual	trends	cannot	be	properly	captured,	and	model	
qualification	cannot	be	performed	adequately.

Cox proportional hazards models for 
baseline biomarkers

An	 initial	 and	 simple	 step	 in	 the	 analysis	 of	 association	
between	 biomarkers	 and	 a	 time-	to-	event	 endpoint	 may	

include	selection	and	testing	of	relevant	baseline	biomark-
ers	via	semiparametric	Cox	proportional	hazards	models	
that	are	conventionally	used	in	clinical	study	analysis	and	
offer	 fast	 parameter	 optimization.46	 For	 further	 survival	
analysis	 involving	 JMs,	 these	 initially	 identified	 statisti-
cally	significant	biomarkers	may	be	investigated	longitu-
dinally	by	means	of	fully	parametric	JMs.

Cox	 proportional	 hazards	 models	 may	 be	 developed	
and	 tested	 using	 survival	 package	 in	 R	 via	 the	 coxph()	
function44	and	with	the	following	syntax:

COX <- coxph(Surv(EVENT_TIME,EVENT) ~ SLDb 
+ LDHb, data = jmdata.id, x = TRUE)

As	 seen	 from	 the	 model	 code,	 we	 investigated	 the	
importance	of	two	baseline	biomarker	candidates,	SLD	
and	 LDH.	The	 optimal	 model	 should	 incorporate	 both	
statistical	 significance	 of	 the	 tested	 biomarkers	 (via	
a	 p	 value	 assessment	 for	 the	 association	 parameters)	
and	the	 lowest	value	 for	a	chosen	penalized	 likelihood	
statistical	 criterion	 (i.e.,	 Akaike	 information	 criterion	
[AIC]),	 which	 describes	 the	 relative	 goodness-	of-	fit	
of	 the	 tested	 models	 against	 the	 training	 data	 set.	 We	

F I G U R E  2  Exploration	plots	for	
training	(black,	left)	and	validation	
(brown,	right)	data	sets.	(a–	d)	Spaghetti	
plots	for	log-	transformed	biomarkers	
showing	mean	values	(solid	lines;	circles,	
SLD;	squares,	LDH)	and	interquartile	
range	(shaded	area).	(e–	f)	Survival	plots	
showing	experimental	Kaplan-	Meier	
curves	(solid	lines)	and	95%	confidence	
interval	(shaded	area).	LDH,	lactate	
dehydrogenase;	SLD,	sum	of	the	longest	
diameters	of	target	lesions

 21638306, 2022, 4, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12763 by C

ochrane R
ussian Federation, W

iley O
nline L

ibrary on [29/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 431A WORKFLOW FOR THE JOINT MODELING OF LONGITUDINAL AND EVENT DATA

considered	 the	 following	 three	 survival	 models:	 uni-
variate	Cox	SLD,	univariate	Cox	LDH,	and	multivariate	
Cox	SLD+LDH,	represented	in	the	aforementioned	code	
and	hereafter	referred	to	as	“COX.”	The	outputs	of	these	
tests	(Table S2)	suggest	that	the	multivariate	COX	model	
should	be	selected	for	further	research.

In	terms	of	parameter	estimates	in	the	survival	models	
developed	here,	it	should	be	noted	that	the	size	of	the	bio-
marker	effects	(i.e.,	the	estimates	of	the	association	param-
eters)	may	change	when	additional	baseline	or	longitudinal	
covariates	 are	 introduced	 into	 the	 model.	 Therefore,	 the	
summary	effect	on	event	risk	may	get	spread	over	a	broad	
range	of	the	chosen	statistically	significant	biomarkers.	In	
particular,	it	can	be	noticed	from	Table S2	that	in	univari-
ate	Cox	models,	the	value	of	SLD	and	LDH	association	pa-
rameters	have	smaller	magnitude	than	in	the	multivariate	
model.	In	further	data	analysis,	one	may	also	include	and	
test	additional	biomarkers	for	their	association	with	OS,	for	
example,	 smoking	 status,	 Eastern	 Cooperative	 Oncology	
Group	(ECOG)	score,	and	so	on.5

Following	 the	analysis	of	baseline	SLD	and	LDH,	we	
next	investigate	the	association	of	longitudinal	biomarker	
trends	with	OS	in	the	training	data	set	(Figure 1).

Linear JMs

As	 mentioned	 previously,	 various	 tools	 may	 be	 used	 for	
JM	development.	An	easy	way	to	investigate	longitudinal	
biomarkers	and	event	risk	is	to	develop	linear	univariate	
or	 multivariate	 JMs	 using	 the	 JM/JMbayes	 packages	 in	
R.14	The	codes	for	the	tested	LME	JMs	are	available	in	the	
Supplementary	Materials,	Section	2.1.

In	 these	 models,	 the	 dynamics	 of	 longitudinal	 bio-
markers	 are	 described	 using	 natural	 spline	 functions.14	
The	 knot	 position	 of	 the	 splines	 may	 be	 updated	 or	 ad-
ditional	covariates	may	be	introduced	to	further	optimize	
the	description	of	biomarkers,	depending	on	the	available	
measurement	frequency.

The	survival	submodels	for	univariate	JMs14	(JM	SLD	
and	JM	LDH	for	longitudinal	SLD	and	longitudinal	LDH,	
respectively)	 were	 developed	 in	 the	 JM	 package	 using	 a	
Weibull	 formulation	 for	 the	 baseline	 hazard.	 To	 reach	
the	 optimal	 model	 convergence	 for	 a	 multivariate	 SLD	
and	LDH	model	(JM	SLD+LDH),	the	model	was	built	in	
the	JMbayes	package	using	a	spline	representation	of	the	
baseline	hazard.

Nonlinear JMs

Advanced	JMs	can	be	developed	and	 tested	with	NLME	
models	 for	 biomarkers.	 A	 full	 representative	 Monolix	

model	code	 is	provided	 in	 the	Supplementary	Materials,	
Section	2.2.	In	this	analysis,	we	considered	biexponential	
functions	to	describe	SLD	and	LDH	dynamics5,17	using	the	
following	ODE	formulation:

where	d	and	g	are	parameters	representing	rate	constants	of	
biomarker	 dynamics,	 and	Biomb	 is	 the	 estimated	 baseline	
value	for	a	biomarker.	Equation (6)	represents	a	longitudinal	
submodel	for	either	of	the	chosen	biomarkers:	SLD	or	LDH.	
These	models	can	also	be	formulated	by	means	of	explicit	
nonlinear	functions.	A	set	of	nonlinear	models	similar	to	the	
one	for	LME	tools	has	been	built	in	Monolix	(JM	SLD,	JM	
LDH,	and	JM	SLD+LDH).	Univariate	models	may	be	gener-
ated	by	removing	relevant	longitudinal	biomarker	sections	
(either	for	SLD	or	LDH)	from	the	model	code	and	consider-
ing	this	biomarker	at	baseline	only.47

For	these	NLME	JMs,	the	hazard	function	embeds	the	
Weibull	formulation	of	the	baseline	hazard,	and	it	can	be	
represented	as	follows:

where	parameters	k	and	λ	define	the	shape	of	the	Weibull	
baseline	hazard	function,	and	αj	is	the	association	parame-
ter	for	the	jth	longitudinal	biomarker	(either	SLD	or	LDH).	
There	are	no	random	effects	added	to	k,	λ,	and	αj.

14	In	Monolix	
survival	models,	a	special	parameter	BaseCov	is	used	to	in-
troduce	baseline	covariates	(its	fixed-	effect	value	should	be	
set	to	0,	and	random	effects	should	be	turned	off).29,47	The	
baseline	covariates	of	interest	should	be	associated	with	this	
BaseCov	parameter;	 thus,	 the	respective	association	coeffi-
cients	will	reflect	the	values	of	αb	 in	Equation (4).	Finally,	
in	univariate	JMs,	if	SLD	is	considered	as	longitudinal,	then	
LDH	is	taken	at	baseline	only	and	vice	versa.

Monolix	incorporates	a	set	of	embedded	tools	to	check	
for	 optimal	 model	 convergence.	Typically,	 for	 successful	
model	 convergence	and	usability	 toward	advanced	diag-
nostics	 and	 predictions,	 one	 should	 pay	 attention	 to	 the	
available	 recommendations.30,48–	51	 More	 details	 are	 pro-
vided	in	the	Supplementary	Materials,	Section	2.3.

MODEL DIAGNOSTICS

Detailed	 summaries	 of	 univariate	 and	 multivariate	 JMs	
for	the	selected	LME	and	NLME	tools	are	provided	in	the	

(6)

dDegr

dt
= −d∗Degr

dGrowth

dt
=g ∗Growth

Biom=Biomb(Degr+Growth−1)

lnBiom= ln(Biom+1),

(7)hi (t) =
k

�
∗

(
t

�

)k−1
∗ e

(
�j∗logBiomij+BaseCov

)
,
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432 |   ZHUDENKOV et al.

Supplementary	 Materials,	 Table  S3.	 The	 association	 pa-
rameters	for	baseline	and	longitudinal	biomarkers	and	OS	
are	provided	in	Table 2.	These	results	suggest	a	similarity	
in	biomarker	association	with	OS	in	the	training	data	set	
across	the	same	JMs	developed	with	different	tools.

Advanced	graphical	diagnostics	of	the	developed	JMs	
include	various	plots	to	efficiently	assess	the	goodness-	of-	
fit	 for	 the	 biomarker	 and	 time-	to-	event	 data	 description	
(Figure 3).	These	graphical	diagnostics	can	be	generated	in	
R	environment	for	both	LME	tools	and	Monolix	in	a	simi-
lar	manner—	see	the	Supplementary	Materials,	Section	3.

Individual	predictions	of	biomarker	trends	and	Si(t)	in	
Monolix	 were	 retrieved	 by	 performing	 a	 sampling	 from	
the	conditional	distribution	of	individual	biomarker	sub-
model	 parameters	 using	 a	 Markov	 Chain	 Monte	 Carlo	
(MCMC)	procedure	(50	simulated	parameters	per	patient)	
that	may	be	controlled	in	the	Monolix	graphical	user	inter-
face	or	using	the	lixoftConnectors/RsSimulx	tools	in	R.14,52

Visual	 predictive	 checks	 (VPCs)	 provide	 further	 in-
formation	 on	 how	 well	 a	 model	 describes	 or	 predicts	
longitudinal	 data.	 The	 observed	 data	 were	 represented	

with	medians	and	10%	and	90%	quantiles	of	observations	
using	a	moving	average	of	a	 fixed	 length	 (e.g.,	30 days).	
Biomarker	trend	predictions	were	obtained	only	for	time-
points	 corresponding	 to	 actual	 observations.	 Similarly	
to	 the	 observed	 data,	 the	 predicted	 values	 were	 drawn	
using	a	moving	average:	solid	lines	represented	10%,	50%,	
and	 90%	 quantiles	 of	 averaged	 individual	 predictions.	
Prediction	intervals	for	each	quantile	were	computed	with	
a	95%	confidence	interval.	VPCs	were	plotted	against	the	
training	data,	thus	describing	the	goodness	of	fit.

Patient	survival	plots	(middle	column,	bottom	graph	in	
Figure 1)	represent	an	important	step	in	the	model	qualifi-
cation	assessment.	They	illustrate	the	alignment	of	the	sur-
vival	function	from	a	qualified	JM	and	actual	KM	estimates	
for	the	training	data.	Per	timepoint,	the	mean	value	of	the	
sampled	individual	survival	probability	(see	Equation 5)	is	
further	averaged	across	all	subjects	to	derive	the	predicted	
marginal	 survival.	 The	 range	 over	 the	 predicted	 marginal	
survival	represents	the	25th	and	75th	percentiles	of	the	aggre-
gated	individual	survival	predictions.	For	JMs	developed	in	
Monolix,	the	individual	survival	function	Si(t)	was	manually	

T A B L E  2 	 Association	parameters	for	all	tested	joint	models

R- based tools Monolix tools

Model type JM SLD JM LDH JM SLD+LDH JM SLD JM LDH
JM 
SLD+LDH

αSLD 0.77 (13.3) 0.53	(20.5) 0.7778 (12.9) 0.85 (7.41) 0.54	(6.06) 0.75 (7.35)

αLDH 0.44	(29.7) 0.75 (14.8) 0.4581 (22.1) 0.38	(13.0) 0.78 (3.57) 0.60 (7.85)

k 1.31a 1.34a N/Ab 1.28	(2.3) 1.26	(2.2) 1.26	(1.82)

λ 6520a 14,300a N/Ab 8380	(15.9) 28,100	(22.6) 19,300	(16.4)

Note: Values	in	bold	font	indicates	the	association	parameters	for	longitudinal	biomarkers	tested	in	the	models.	Values	are	provided	as	point	estimates	(%RSE).
Abbreviations:	JM,	joint	model;	LDH,	lactate	dehydrogenase;	SLD,	sum	of	the	longest	diameters	of	target	lesions.
aDerived	from	JM	summary	(see	Supplementary	Materials,	Table S3).
bBecause	Weibull	baseline	hazard	parametrization	is	not	available	(N/A)	in	JMbayes,	splines	were	used	instead.

F I G U R E  3  (a,	b)	Visual	predictive	check	plots	for	the	training	data	set	(Qualification	Step).	Model	results	obtained	using	a	multivariate	
nonlinear	biexponential	joint	model	in	Monolix.	Solid	black	lines	represent	aggregated	log-	transformed	biomarker	data	from	the	training	
data	set	(circles,	SLD;	squares,	LDH).	Solid	colored	lines	represent	10%,	50%,	and	90%	quantiles	of	averaged	individual	predictions	(red,	
SLD;	blue,	LDH).	Prediction	intervals	for	each	quantile	are	computed	with	a	95%	confidence	interval	(shaded	area).	(c)	Survival	plot	shows	
experimental	Kaplan-	Meier	curve	(solid	black)	from	the	training	data	set	and	the	mean	model	prediction	(solid	gray)	with	the	interquartile	
range	(shaded	area).	LDH,	lactate	dehydrogenase;	SLD,	sum	of	the	longest	diameters	of	target	lesions
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   | 433A WORKFLOW FOR THE JOINT MODELING OF LONGITUDINAL AND EVENT DATA

coded	in	R,	according	to	Equation (5),	subsequently	aggre-
gated,	and	taken	as	an	output	from	the	RsSimulx	script	(see	
the	Supplementary	Materials,	Section	3.1).

Similarly,	these	plots	may	be	generated	in	R	when	using	
LME	JM	tools	(see	Figure S3).	However,	graphical	diagnos-
tics	for	multivariate	JMs	in	JMbayes	are	limited.	Thus,	VPC	
plots	for	SLD	and	LDH	as	well	as	patient	survival	plots	for	
the	training	data	were	generated	for	univariate	models	(JM	
SLD	and	JM	LDH)	handled	within	the	JM	package.

Finally,	comparable	goodness-	of-	fit	 (Figure 3	and	S3)	
as	well	as	parameter	estimates	(Table 2)	were	obtained	for	
LME	and	NLME	models	against	the	training	data.	Upon	
achieving	 successful	 model	 convergence	 and	 adequate	
diagnostics,	 we	 considered	 further	 model	 applicability	
to	 predict	 biomarker	 dynamics	 as	 well	 as	 survival	 and	
perform	discrimination	analyses	against	 the	 interim	val-
idation	 data.	 These	 steps	 are	 schematically	 described	 in	
Figure 1	(right	column).

EXTERNAL VALIDATION

A	 validation	 procedure	 usually	 necessitates	 an	 analysis	
of	model	performance	against	an	external	data	set—	data	
that	were	not	used	in	the	earlier	model	qualification.	As	
stated	 previously	 and	 represented	 in	 Figure  1,	 we	 per-
formed	such	an	analysis	against	an	interim	validation	data	
set	with	biomarker	and	survival	data	known	for	the	first	
3 months	of	observation.

In	Monolix,	individual	predictions	of	biomarker	trends	
and	patient	survival	were	obtained	via	sampling	from	the	
conditional	 distribution	 of	 random	 effects,	 whereas	 the	
rest	of	the	model	parameters	were	fixed	at	their	estimated	
values	obtained	during	qualification.	In	LME	JMs,	these	
parameters	 were	 sampled	 from	 the	 posterior	 parameter	
distribution	obtained	from	the	qualification	procedure.14	

We	further	performed	survival	discrimination	assessment	
for	 all	 generated	 LME	 and	 NLME	 JMs,	 thus	 comparing	
model	predictions	against	actual	survival	outcomes	in	the	
validation	study.

Survival	 discrimination	 performance	 is	 typically	 ana-
lyzed	using	the	well-	established	metrics	of	area	under	the	
receiver	operating	characteristic	curve	(ROC-	AUC)	and	BS	
(Brier	score).53,54	ROC-	AUC	values	range	from	0	to	1,	with	
a	higher	value	representing	higher	discrimination	perfor-
mance,	whereas	a	value	of	0.5	would	signify	no	discrimina-
tion	ability.	BS	represents	a	mean	square	error	of	individual	
survival	probability	predictions,	and	its	values	range	from	0	
to	1,	with	lower	values	representing	higher	precision.5

Both	 ROC-	AUC	 and	 BS	 were	 calculated	 for	 survival	
predictions	Si(t)	obtained	at	specific	timepoints	of	interest	
(e.g.,	at	different	months	following	the	longitudinal	data	
cutoff	 in	 the	 validation	 study).	 Models	 with	 higher	 dis-
crimination	performance	may	potentially	be	further	used	
to	adequately	stratify	patient	subgroups.	Although	this	ad-
ditional	step	is	not	described	in	the	present	tutorial,	it	has	
been	detailed	in	a	previously	published	JM	analysis.5

The	chosen	data	cutoff	of	3 months	 in	the	validation	
data	set	represents	an	early	biomarker	assessment	in	se-
lected	NSCLC	studies.	It	provides	enough	data	to	perform	
predictions	of	biomarker	dynamics	given	the	sample	mea-
surement	frequency	in	the	considered	studies,	combined	
with	 an	 appropriate	 JM	 structure	 (especially	 for	 NLME	
multivariate	JMs—	see	Figure 5).	However,	depending	on	
the	clinical	studies	and	data,	a	different	cutoff	time	may	
be	 tested	 to	 identify	 the	optimal	amount	of	 interim	 lon-
gitudinal	 data	 that	 would	 allow	 for	 adequate	 biomarker	
predictions	and	efficient	survival	discrimination.5

ROC-	AUC	and	BS	can	be	calculated	in	a	unified	man-
ner	 for	 model	 predictions	 generated	 using	 LME	 and	
NLME	JM	tools,	as	shown	in	the	Supplementary	Materials,	
Section	 4.	 Implemented	 ROC-	AUC	 and	 BS	 calculations	

F I G U R E  4  Area	under	the	receiver	operating	characteristic	curve	(solid	line)	and	Brier	score	(dashed	line)	diagnostics	for	the	interim	
validation	data	set	based	on	the	selected	survival	models.	(a)	Linear	models	in	JM/JMbayes	packages.	(b)	Nonlinear	models	in	Monolix.	
Both	plots	feature	the	same	COX	model,	which	was	qualified	using	the	coxph()	function	in	R	(see	the	Supplementary	Materials,	Section	4.2,	
Table S2	and	“Cox	Proportional	Hazards	Models	for	Baseline	Biomarkers”	section	in	the	main	text).	COX,	conventional	semiparametric	
survival	model;	JM,	joint	model;	LDH,	lactate	dehydrogenase;	SLD,	sum	of	the	longest	diameters	of	target	lesions
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are	adapted	to	right-	censored	data	using	the	inverse	prob-
ability	of	censoring	weighting.55,56	Both	ROC-	AUC	and	BS	
were	 calculated	 using	 the	 means	 of	 sampled	 individual	
survival	predictions	without	considering	 the	uncertainty	
in	 model	 parameters	 and	 random	 effects.	 Also,	 the	 JM	
package	includes	embedded	functions	for	ROC-	AUC	and	
BS	calculations.14	Outputs	of	the	discrimination	analysis	
are	presented	in	Figure 4.

The	 conventional	 semiparametric	 survival	 model	
(COX),	which	 incorporated	only	baseline	biomarker	val-
ues,	was	a	poor	performer	 in	 these	diagnostics,	whereas	
the	multivariate	JMs	in	JMbayes	and	Monolix	performed	
well,	indicating	that	longitudinal	trajectories	of	SLD	and	
LDH	 biomarkers	 were	 important	 to	 achieve	 higher	 sur-
vival	 discrimination	 for	 the	 validation	 data.	 If	 further	
discrimination	 performance	 gain	 was	 sought,	 one	 may	
want	 to	 identify	 and	 add	 other	 baseline	 or	 longitudinal	
covariates	 deemed	 important	 to	 the	 augmented	 multi-
variate	JMs.	Interestingly,	a	higher	number	of	significant	
baseline	 covariates	 in	 a	 conventional	 Cox	 proportional	
hazards	model	may	result	in	a	similar	or	higher	discrim-
ination	 performance	 versus	 JMs	 with	 a	 smaller	 number	

of	longitudinal	and	baseline	biomarkers	(data	not	shown).	
However,	 such	 baseline	 biomarker	 models	 would	 not	
allow	for	making	inference	for	biomarker	dynamics	that	
may	carry	clinical	importance	or	may	even	be	foreseen	as	
study	 endpoints.	 For	 all	 the	 univariate	 and	 multivariate	
survival	models	considered	in	this	tutorial,	an	assessment	
should	be	performed	to	determine	whether	a	biomarker's	
association	 parameter	 p	 value	 is	 below	 0.05	 (informa-
tion	usually	available	 in	 the	model	 summaries—	refer	 to	
Table S3).	Likewise,	a	relevant	statistical	criterion	repre-
senting	 the	 goodness-	of-	fit	 and	 incorporating	 parameter	
count	penalization	(i.e.,	AIC)	should	be	evaluated	to	com-
pare	the	models	and	combat	overparameterization.57,58

To	provide	VPCs	and	patient	survival	prediction	diag-
nostics	 (Figure 1,	 right	column)	using	 the	selected	LME	
and	NLME	JM	tools,	a	 set	of	 functions	and	scripts	 such	
as	 those	 used	 in	 the	 model	 qualification	 steps	 were	 ap-
plied	(see	the	Supplementary	Materials,	Sections	3	and	5).		
For	 LME	 JMs,	 which	 were	 implemented	 in	 the	 JM	 and	
JMbayes	packages,	the	predict()	and	survfitJM()	functions	
were	used	to	obtain	predictions	of	individual	longitudinal	
trends	and	individual	survival	Si(t)	for	the	validation	data.	

F I G U R E  5  (a–	d)	Visual	predictive	
check	plots	for	the	interim	validation	data	
set	(Validation	step),	based	on	univariate	
linear	joint	models	in	JM	(a,	c)	and	a	
multivariate	nonlinear	biexponential	joint	
model	in	Monolix	(b,	d).	Solid	black	lines	
represent	aggregated	log-	transformed	
biomarker	data	from	the	validation	data	
set	(circles,	SLD;	squares,	LDH).	Solid	
colored	lines	represent	10%,	50%,	and	
90%	quantiles	of	averaged	individual	
predictions	(orange,	SLD;	green,	LDH).	
Prediction	intervals	for	each	quantile	are	
computed	with	a	95%	confidence	interval	
(shaded	area).	(e–	f)	Survival	plot	shows	
the	experimental	Kaplan-	Meier	curve	
(solid	brown)	from	the	validation	data	
set	and	the	mean	model	prediction	(solid	
gray)	with	the	interquartile	range	(shaded	
area)	for	a	multivariate	linear	joint	
model	in	JMbayes	(e)	and	a	multivariate	
nonlinear	biexponential	joint	model	in	
Monolix	(f).	LDH,	lactate	dehydrogenase;	
SLD,	sum	of	the	longest	diameters	of	
target	lesions
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These	functions	represent	outcomes	of	the	sampling	from	
subject-	specific	 conditional	 probabilities	 of	 individual	
random	effects	and	corresponding	survival	or	biomarker	
predictions14	obtained	from	previously	qualified	JMs.

In	 Monolix,	 predictions	 of	 longitudinal	 biomarker	 tra-
jectories	and	individual	survival	Si(t)	were	generated	in	the	
lixoftConnectors/RsSimulx	packages	(see	the	Supplementary	
Materials,	Section	5.1).	The	estimated	population	parame-
ters	from	previously	qualified	JMs	were	fixed	and	used	for	
individual	 parameter	 sampling	 in	 a	 MCMC	 procedure52	
against	the	interim	validation	data	set.

For	validation	VPC	plots,	longitudinal	biomarker	pre-
dictions	and	Si(t)	were	simulated	only	 for	 those	patients	
who	survived	(event	or	censoring	times	for	these	patients	
should	exceed	 the	selected	cutoff	of	3 months),	at	 time-
points	for	which	further	experimental	observations	were	
available.	The	other	features	of	the	validation	figures	were	
the	 same	 as	 in	 the	 qualification	 step.	 VPCs	 and	 patient	
survival	prediction	plots	were	similarly	generated	for	LME	
and	NLME	tools	(Figure 5).

Within	 the	 tested	 JM	 tools,	 comparable	 diagnostic	
performance	 for	 OS	 predictions	 were	 achieved	 using	 the	
JM/JMbayes	 packages	 and	 Monolix.	 However,	 Monolix	
provided	 improved	 predictions	 of	 longitudinal	 biomarker	
trends.	In	the	initial	section	of	the	present	tutorial,	we	men-
tioned	possible	limitations	of	LME	JMs,	owing	to	the	longer	
term	behavior	of	the	longitudinal	submodels.	Splines	may	
cause	nonmeaningful	trends	in	the	areas	with	few	observa-
tions	or	extrapolation	areas	(in	case	of	 the	validation	data	
set,	 beyond	 the	 3-	month	 cutoff	 interval).	 Although	 these	
LME	 models	 provided	 an	 adequate	 goodness	 of	 fit	 versus	
NLME	 models	 in	 Monolix	 (e.g.,	 compare	 Figure  S3	 and	
Figure 3)	for	the	training	data,	the	capability	of	LME	JMs	to	
adequately	predict	the	longer	term	longitudinal	biomarker	
dynamics	for	the	validation	data	was	limited	(Figure 5).

We	considered	standard	spline	models	in	the	JM/JMBayes	
packages	and	biexponential	models	in	Monolix.	Additional	
research	may	be	required	to	determine	whether	these	models	
are	fully	optimal	compared	with	those	that	can	be	generated	
using	customized	knot	positions	for	splines	or	using	various	
empirical	 or	 mechanistic	 NLME	 biomarker	 submodels	 in	
Monolix.	One	option	may	also	be	to	identify	and	introduce	
significant	covariates	for	the	longitudinal	submodels	of	JMs	
(i.e.,	the	biomarker	trend	may	depend	on	patient's	baseline	
characteristics,	 disease	 status,	 external	 conditions,	 chosen	
therapy,	etc.).	However,	one	needs	to	consider	that	these	ad-
vanced	JMs	may	require	substantial	computational	times.

CONCLUSIONS

In	this	tutorial,	we	proposed	and	implemented	a	unified	
workflow	for	joint	modeling	to	perform	a	comprehensive	

analysis	of	multiple	longitudinal	biomarkers	and	a	time-	
to-	event	endpoint.	The	workflow	incorporates	an	initial	
data	 exploration	 phase,	 steps	 in	 performing	 JM	 build-
ing	and	qualification	using	a	training	data	set,	as	well	as	
testing	against	an	external	data	set	for	model	validation.	
It	 has	 been	 implemented	 in	 R-	based	 LME	 tools	 and	 in	
more	advanced	NLME	tools	such	as	Monolix.	These	tools	
allow	 one	 to	 comprehensively	 assess	 information	 and	
data	previously	collected	through	clinical	trials	to	predict	
the	outcomes	of	another	trial	based	on	its	interim	data.

The	outcomes	of	the	analysis	suggest	that	for	the	con-
sidered	 NSCLC	 data	 sets,	 nonlinear	 multivariate	 JMs	 in	
Monolix	 provide	 the	 highest	 performance	 in	 predicting	
longitudinal	 biomarker	 trends	 and	 survival	 discrimina-
tion.	 Moreover,	 advanced	 NLME	 joint	 modeling	 tools	
such	 as	 NONMEM,	 Monolix,	 or	 Stan	 may	 further	 over-
come	 actual	 study	 data	 limitations	 with	 respect	 to	 the	
clinical	development	process.	When	multiple	biomarkers	
are	being	evaluated	in	patients	it	often	happens	that	both	
the	measurement	schedule	and	 the	duration	of	observa-
tions	 vary	 across	 biomarkers,	 hence	 the	 biomarker	 data	
are	not	aligned	in	time.	For	the	sake	of	simplicity,	in	this	
tutorial,	we	considered	a	scenario	whereby	all	interim	bio-
marker	data	were	collected	up	to	the	same	cutoff	in	time.	
However,	the	approach	we	delineated	may	also	be	applied	
to	an	analysis	that	includes	multiple	biomarkers	that	have	
different	observation	times.

JMs	 are	 emerging	 as	 a	 data	 analytics	 methodology,	
which	 may	 provide	 a	 link	 between	 advanced	 mech-
anistic	 biomarker	 submodels	 (which	 may	 include	
quantitative	 systems	 pharmacology	 submodels)	 and	
time-	to-	event	 data	 to	 perform	 state-	of-	the-	art	 clinical	
trial	 simulations.	 Joint	 modeling,	 in	 effect,	 represents	
a	 powerful	 methodology	 in	 pharmacometric	 analyses,	
supported	by	efficient	tools,	to	characterize	the	dynamic	
behavior	of	biomarkers	and	its	association	with	clinical	
trial	outcomes.
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